Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.746
Filtrar
1.
Vet Q ; 44(1): 1-18, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38606662

RESUMO

Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.


Assuntos
Microbiota , Doenças Respiratórias , Animais , Mucinas/química , Gado , Doenças Respiratórias/veterinária
2.
Anal Chem ; 96(13): 5242-5250, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512228

RESUMO

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to a solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we introduce innovative elution conditions amenable to mucinase digestion and downstream analysis using mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing the glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all of the other enrichment techniques tested. This allowed for the effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.


Assuntos
Glicoproteínas , Mucinas , Humanos , Mucinas/química , Espectrometria de Massas , Glicosilação , Glicopeptídeos/química
3.
PLoS One ; 19(3): e0297292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483964

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation resulting from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host. Reactive oxygen species (ROS) generated by NADPH oxidases (NOX) provide antimicrobial defense, redox signaling and gut barrier maintenance. NADPH oxidase mutations have been identified in IBD patients, and mucus layer disruption, a critical aspect in IBD pathogenesis, was connected to NOX inactivation. To gain insight into ROS-dependent modification of epithelial glycosylation the colonic and ileal mucin O-glycome of mice with genetic NOX inactivation (Cyba mutant) was analyzed. O-glycans were released from purified murine mucins and analyzed by hydrophilic interaction ultra-performance liquid chromatography in combination with exoglycosidase digestion and mass spectrometry. We identified five novel glycans in ileum and found minor changes in O-glycans in the colon and ileum of Cyba mutant mice. Changes included an increase in glycans with terminal HexNAc and in core 2 glycans with Fuc-Gal- on C3 branch, and a decrease in core 3 glycans in the colon, while the ileum showed increased sialylation and a decrease in sulfated glycans. Our data suggest that NADPH oxidase activity alters the intestinal mucin O-glycans that may contribute to intestinal dysbiosis and chronic inflammation.


Assuntos
Doenças Inflamatórias Intestinais , Mucinas , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio , Mucinas/química , Inflamação , Polissacarídeos/química , NADPH Oxidases/genética , Mucosa Intestinal/química
4.
Methods Mol Biol ; 2763: 71-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347401

RESUMO

In the intestine, mucus covering the mucosa plays a critical role in maintaining gut homeostasis by protecting the mucosa from invasion by commensal bacteria. The gut mucus is composed primarily of MUC2 mucin secreted by goblet cells. MUC2 is highly O-glycosylated, and O-glycans are necessary for the function and polymer structure of MUC2. In addition, recent evidence revealed that several glycan modifications, such as sialylation and sulfation, confer resistance of mucins to proteolysis and affect the viscosity and lubricity of mucus. Therefore, characterizing glycan structures of mucins is required to understand their functions fully. In this chapter, we describe how to purify secreted mucins from the mammalian intestine for analysis of their glycan structures. This description includes the extraction of MUC2 mucin from the mucosal surface of the mouse colon and colon explants.


Assuntos
Mucosa Intestinal , Mucinas , Animais , Camundongos , Mucinas/química , Mucosa Intestinal/microbiologia , Mucina-2 , Células Caliciformes , Polissacarídeos , Mamíferos
5.
Methods Mol Biol ; 2763: 3-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347396

RESUMO

A mucin-type glycoprotein extracted from various species of jellyfish (JF) is named qniumucin (Q-mucin). Compared with general mucins, most of which are from mammals including humans, Q-mucin can be collected on a relatively large scale with high yield. Owing to its simple structure with low heterogeneity, Q-mucin has a potential to be developed into material mucins which opens various applications valuable to humans. On the basis of our present knowledge, here, we describe our protocol for the extraction of Q-mucin, which can be extracted from any JF species worldwide. Experimental protocols to identify the structure of Q-mucin are also introduced.


Assuntos
Mucinas , Cifozoários , Animais , Humanos , Mucinas/química , Cifozoários/química , Mamíferos
6.
Methods Mol Biol ; 2763: 79-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347402

RESUMO

Distinct bands of mucins cannot be banded using a gel electrophoresis based on a molecular sieving effect due to their very large molecular weight and remarkable diversity in glycosylation. In contrast, membrane electrophoresis can separate mucins as round bands. Here, we present an analysis of mucin separation via membrane electrophoresis using a porous polyvinylidene difluoride membrane, which is highly stable against chemical modifications and various organic solvents. The separated mucins can not only be stained with dyes but also with antibodies and lectins, and glycans can be released from the excised bands and analyzed.


Assuntos
Corantes , Mucinas , Eletroforese/métodos , Mucinas/química , Corantes/química , Lectinas , Glicosilação , Eletroforese em Gel de Poliacrilamida
7.
Methods Mol Biol ; 2763: 159-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347409

RESUMO

Structural analysis of O-glycans from mucins and characterization of the interaction of these glycans with other biomolecules are essential for a full understanding of mucins. Various techniques have been developed for the structural and functional analysis of glycans. While 9-fluorenylmethyl chloroformate (Fmoc-Cl) is generally used to protect amino groups in peptide synthesis, it can also be used as a glycan-labeling reagent for structural analysis. Fmoc-labeled glycans are strongly fluorescent and can be analyzed with high sensitivity using liquid chromatography-fluorescence detection (LC-FD) analysis as well as being analyzed with high sensitivity by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Fmoc-labeled glycans can be easily delabeled and converted to glycosylamine-form or free (hemiacetal or aldehyde)-form glycans that can be used to fabricate glycan arrays or synthesize glycosyl dendrimers. This derivatization allows for the isolation from biological samples of glycans that are difficult to synthesize chemically, as well as the fabrication of immobilized-glycan devices. The Fmoc labeling method promises to be a tool for accelerating O-glycan structural analysis and an understanding of molecular interactions. In this chapter, we introduce the Fmoc labeling method for analysis of O-glycans and fabrication of O-glycan arrays.


Assuntos
Fluorenos , Polissacarídeos , Fluorenos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/química , Mucinas/química
8.
Methods Mol Biol ; 2763: 187-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347411

RESUMO

Mucins are sugar-rich glycoproteins. Glycoprotein sugar moieties are structurally diverse, making it difficult to obtain naturally pure glycoproteins. Chemical synthesis is a powerful tool for obtaining target or designed compounds. Automated peptide synthesizers are commercially available, and many use the solid-phase peptide synthesis (SPPS) method. In addition, some of these synthesizers apply microwave irradiation to obtain higher reaction yields, thereby enabling the synthesis of 40 to 50 amino acid residual glycopeptides. Theoretically, glycopeptides can be synthesized using methods similar to those used for peptide synthesis, but glycosylated amino acid synthons are less stable than amino acid synthons and are also very expensive. Therefore, they are not suitable for use in large excess amounts. Many of oligosaccharide-linked amino acid synthons are not commercially available, so they must be specially prepared, and they also require careful handling that demands specific organic synthesis experience and techniques. However, monosaccharide-linked amino acid synthons are commercially available and are relatively easy to handle. Here, as an entry into glycopeptide synthesis, we describe a typical glycopeptide synthesis procedure for a 27 amino acid residual MUC1 repeating unit with monosaccharides.


Assuntos
Glicopeptídeos , Mucinas , Mucinas/química , Glicopeptídeos/química , Mucina-1 , Carboidratos/química , Glicoproteínas , Técnicas de Química Sintética , Açúcares , Aminoácidos/química
9.
Methods Mol Biol ; 2763: 201-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347412

RESUMO

Mucin glycans are associated with the function of mucin in maintaining mucosal homeostasis. Therefore, the glycomic analysis of mucins is crucial. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most suitable methods for the glycomic analysis of mucin O-glycans. In this chapter, we describe methods for analyzing permethylated O-glycan alditols released from mucins by MALDI-TOF MS and MALDI-TOF tandem mass spectrometry (MALDI-TOF MS/MS).


Assuntos
Mucinas , Espectrometria de Massas em Tandem , Mucinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/química
10.
Methods Mol Biol ; 2763: 209-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347413

RESUMO

Acidic O-glycans having sialic acid and/or sulfate residue are abundantly expressed in intestinal mucins. However, structural elucidation of acidic O-glycans is a laborious and time-consuming task due to their large structural variations. Here, we describe a methodology of structural elucidation for sialylated O-glycan alditols from intestinal mucins using tandem mass spectroscopy. Methylesterification and mild periodate oxidation of sialylated O-glycan alditols assist mass analysis. This description includes the purification process of O-glycan alditols for structural analysis.


Assuntos
Mucinas , Álcoois Açúcares , Mucinas/química , Álcoois Açúcares/análise , Polissacarídeos/química , Intestinos/química , Espectrometria de Massas em Tandem
11.
Biomacromolecules ; 25(3): 1578-1591, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38333985

RESUMO

Muco-obstructive diseases change airway mucus properties, impairing mucociliary transport and increasing the likelihood of infections. To investigate the sorption properties and nanostructures of mucus in health and disease, we investigated mucus samples from patients and cell cultures (cc) from healthy, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) airways. Atomic force microscopy (AFM) revealed mucin monomers with typical barbell structures, where the globule to spacer volume ratio was the highest for CF mucin. Accordingly, synchrotron small-angle X-ray scattering (SAXS) revealed more pronounced scattering from CF mucin globules and suggested shorter carbohydrate side chains in CF mucin and longer side chains in COPD mucin. Quartz crystal microbalance with dissipation (QCM-D) analysis presented water sorption isotherms of the three types of human airway mucus, where, at high relative humidity, COPD mucus had the highest water content compared to cc-CF and healthy airway mucus (HAM). The higher hydration of the COPD mucus is consistent with the observation of longer side chains of the COPD mucins. At low humidity, no dehydration-induced glass transition was observed in healthy and diseased mucus, suggesting mucus remained in a rubbery state. However, in dialyzed cc-HAM, a sorption-desorption hysteresis (typically observed in the glassy state) appeared, suggesting that small molecules present in mucus suppress the glass transition.


Assuntos
Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Água/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Muco/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucinas/química
12.
Sci Adv ; 10(9): eadj8829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416819

RESUMO

N-acetylgalactosaminyl-transferases (GalNAc-Ts) initiate mucin-type O-glycosylation, an abundant and complex posttranslational modification that regulates host-microbe interactions, tissue development, and metabolism. GalNAc-Ts contain a lectin domain consisting of three homologous repeats (α, ß, and γ), where α and ß can potentially interact with O-GalNAc on substrates to enhance activity toward a nearby acceptor Thr/Ser. The ubiquitous isoenzyme GalNAc-T1 modulates heart development, immunity, and SARS-CoV-2 infectivity, but its substrates are largely unknown. Here, we show that both α and ß in GalNAc-T1 uniquely orchestrate the O-glycosylation of various glycopeptide substrates. The α repeat directs O-glycosylation to acceptor sites carboxyl-terminal to an existing GalNAc, while the ß repeat directs O-glycosylation to amino-terminal sites. In addition, GalNAc-T1 incorporates α and ß into various substrate binding modes to cooperatively increase the specificity toward an acceptor site located between two existing O-glycans. Our studies highlight a unique mechanism by which dual lectin repeats expand substrate specificity and provide crucial information for identifying the biological substrates of GalNAc-T1.


Assuntos
Mucinas , N-Acetilgalactosaminiltransferases , Mucinas/química , Mucinas/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo , Lectinas , Especificidade por Substrato , Estrutura Terciária de Proteína , 60636 , Açúcares
13.
PeerJ ; 12: e16785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274327

RESUMO

Background: Changes in protein glycosylation have been reported in various diseases, including cancer; however, the consequences of altered glycosylation in meningiomas remains undefined. We established two benign meningioma cell lines-SUT-MG12 and SUT-MG14, WHO grade I-and demonstrated the glycan and glycosyltransferase profiles of the mucin-type O-linked glycosylation in the primary benign meningioma cells compared with two malignant meningioma cell lines-HKBMM and IOMM-Lee, WHO grade III. Changes in O-linked glycosylation profiles in malignant meningiomas were proposed. Methods: Primary culture technique, morphological analysis, and immunocytochemistry were used to establish and characterize two benign meningioma cell lines. The glycan profiles of the primary benign and malignant meningiomas cell lines were then analyzed using lectin cytochemistry. The gene expression of O-linked glycosyltransferases, mucins, sialyltransferases, and fucosyltransferases were analyzed in benign and malignant meningioma using the GEO database (GEO series GSE16581) and quantitative-PCR (qPCR). Results: Lectin cytochemistry revealed that the terminal galactose (Gal) and N-acetyl galactosamine (GalNAc) were highly expressed in primary benign meningioma cells (WHO grade I) compared to malignant meningioma cell lines (WHO grade III). The expression profile of mucin types O-glycosyltransferases in meningiomas were observed through the GEO database and gene expression experiment in meningioma cell lines. In the GEO database, C1GALT1-specific chaperone (COSMC) and mucin 1 (MUC1) were significantly increased in malignant meningiomas (Grade II and III) compared with benign meningiomas (Grade I). Meanwhile, in the cell lines, Core 2 ß1,6-N-acetylglucosaminyltransferase-2 (C2GNT2) was highly expressed in malignant meningiomas. We then investigated the complex mucin-type O-glycans structures by determination of sialyltransferases and fucosyltransferases. We found ST3 ß-galactoside α-2,3-sialyltransferase 4 (ST3GAL4) was significantly decreased in the GEO database, while ST3GAL1, ST3GAL3, α1,3 fucosyltransferases 1 and 8 (FUT1 and FUT8) were highly expressed in malignant meningioma cell lines-(HKBMM)-compared to primary benign meningioma cells-(SUT-MG12 and SUT-MG14). Conclusion: Our findings are the first to demonstrate the potential glycosylation changes in the O-linked glycans of malignant meningiomas compared with benign meningiomas, which may play an essential role in the progression, tumorigenesis, and malignancy of meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Glicosilação , Sialiltransferases/genética , Mucinas/química , Glicosiltransferases/metabolismo , Polissacarídeos/química , Fucosiltransferases/metabolismo , Lectinas/metabolismo
14.
J Colloid Interface Sci ; 659: 849-858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218088

RESUMO

HYPOTHESIS: The mucoadhesive characteristics of amphoteric polymers (also known as polyampholytes) can vary and are influenced by factors such as the solution's pH and its relative position against their isoelectric point (pHIEP). Whilst the literature contains numerous reports on mucoadhesive properties of either cationic or anionic polymers, very little is known about these characteristics for polyampholytes EXPERIMENTS: Here, two amphoteric polymers were synthesized by reaction of linear polyethylene imine (l-PEI) with succinic or phthalic anhydride and their mucoadhesive properties were compared to bovine serum albumin (BSA), selected as a natural polyampholyte. Interactions between these polymers and porcine gastric mucin were studied using turbidimetric titration and isothermal titration calorimetry across a wide range of pHs. Model tablets were designed, coated with these polymers and tested to evaluate their adhesion to porcine gastric mucosa at different pHs. Moreover, a retention study using fluorescein isothiocyanate (FITC)-labelled polyampholytes deposited onto mucosal surfaces was also conducted FINDINGS: All these studies indicated the importance of solution pH and its relative position against pHIEP in the mucoadhesive properties of polyampholytes. Both synthetic and natural polyampholytes exhibited strong interactions with mucin and good mucoadhesive properties at pH < pHIEP.


Assuntos
Mucinas , Polímeros , Suínos , Animais , Polímeros/química , Mucinas/química , Mucinas Gástricas
15.
Curr Opin Gastroenterol ; 40(1): 1-6, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37983559

RESUMO

PURPOSE OF REVIEW: Gut microbiota-mucosa-epithelial cells co-exist in an intricate three-way relationship that underpins gut homeostasis, and ultimately influences health and disease conditions. The O-glycans of mucin glycoproteins have been uncovered as a centrepiece of this system, although understanding the phenomena at play at the molecular level has been challenging and subject to significant traction over the last years. The purpose of this review is to discuss the recent advances in the phenomena that mediate microbiota and mucus multidirectional interactions in the human gut. RECENT FINDINGS: The mucus biosynthesis and degradation by both commensal and pathogenic bacteria is under tight regulation and involves hundreds of carbohydrate-active enzymes (CAZy) and transporters. The fucosylation of O-glycans from mucin-2 seems to dictate binding by pathogenic species and to influence their virulence. Less clear is the influence of O-glycans in quorum sensing and biofilm formation. We have reviewed the advances in the in vitro models available to recreate the phenomena that capture the physiological context of the intestinal environment, emphasising models that include mucus and other aspects relevant to the physiological context. SUMMARY: The recent findings highlight the importance of merging advances in analytical (glycans analysis) and omics techniques along with original robust in vitro models that enable to deconstruct part of the high complexity of the living gut and expand our understanding of the microbes-mucosa relationships and their significance in health and disease.


Assuntos
Mucosa Intestinal , Mucinas , Humanos , Mucosa Intestinal/metabolismo , Mucinas/química , Mucinas/metabolismo , Células Epiteliais/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Bactérias
16.
Int J Biol Macromol ; 257(Pt 2): 128710, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101660

RESUMO

α-Amylase activity differs between individuals and is influenced by dietary behavior and salivary constituents, but limited information is available on the relationship between α-amylase activity and saliva components. This study investigated the impact of salivary proteins on α-amylase activity, their various correlations, the effect of mucin (MUC5B and MUC7) and lactoferrin on the enzymatic kinetics of α-amylase, and the mechanisms of these interactions using the quartz crystal microbalance with dissipation (QCM-D) technique and molecular docking. The results showed that α-amylase activity was significantly correlated with the concentrations of MUC5B (R2 = 0.42, p < 0.05), MUC7 (R2 = 0.35, p < 0.05), and lactoferrin (R2 = 0.35, p < 0.05). An in vitro study demonstrated that α-amylase activity could be significantly increased by mucins and lactoferrin by decreasing the Michaelis constant (Km) of α-amylase. Moreover, the results from the QCM-D and molecule docking suggested that mucin and lactoferrin could interact with α-amylase to form stable α-amylase-mucin and α-amylase-lactoferrin complexes through hydrophobic interactions, electrostatic interactions, Van der Waals forces, and hydrogen bonds. In conclusion, these findings indicated that the salivary α-amylase activity depended not only on the α-amylase content, but also could be enhanced by the interactions of mucin/lactoferrin with α-amylase.


Assuntos
Mucinas , Saliva , Humanos , Mucinas/química , Saliva/química , Lactoferrina/metabolismo , Simulação de Acoplamento Molecular , Técnicas de Microbalança de Cristal de Quartzo , alfa-Amilases/metabolismo
17.
NPJ Biofilms Microbiomes ; 9(1): 97, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081891

RESUMO

Understanding how dietary polysaccharides affect mucin O-glycosylation and gut microbiota could provide various nutrition-based treatments. Here, the O-glycan profile of the colonic mucosa and gut microbiome were investigated in C57BL/6J mice fed six structurally diverse dietary polysaccharides and a mixture of six fibers. Dietary polysaccharides increased total O-glycans, mainly by stimulating neutral glycans. Highly branched arabinogalactan promoted terminally fucosylated core 1 O-glycans; whereas linear polysaccharides, including pectin, konjac glucomannan, inulin, and the fiber mixture, favored terminally di-fucosylated O-glycans. The last three polysaccharides also lowered the level of sulfated O-glycans and sialylated mono-fucosylated O-glycans. Varied monosaccharide composition in mixed polysaccharides had a synergistic beneficial effect, boosting fucosylated neutral glycans, decreasing acidic glycans, and stimulating microbial richness and diversity. Dietary polysaccharides containing arabinose and sulfate groups enhanced the relative abundances of Akkermansia and Muribaculaceae, respectively. The present comparison reveals the relationship between dietary polysaccharide structure, mucin O-glycan composition, and intestinal microorganisms.


Assuntos
Microbioma Gastrointestinal , Mucinas , Animais , Camundongos , Mucinas/química , Mucinas/metabolismo , Glicosilação , Camundongos Endogâmicos C57BL , Polissacarídeos
18.
Adv Carbohydr Chem Biochem ; 84: 23-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37979978

RESUMO

The biological signaling properties of lectins, which are carbohydrate-binding proteins, are due to their ability to bind and cross-link multivalent glycoprotein receptors on the surface of normal and transformed cells. While the cross-linking properties of lectins with multivalent carbohydrates and glycoproteins are relatively well understood, the mechanisms of binding of lectins to multivalent glycoconjugates are less well understood. Recently, the thermodynamics of binding of lectins to synthetic clustered glycosides, a multivalent globular glycoprotein, and to linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules. Importantly, the mechanism of binding of lectins to mucins is similar to that for a variety of protein ligands binding to DNA. Recent analysis also shows that high-affinity lectin-mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects which facilitate binding and subsequent complex formation including enzymology.


Assuntos
Carboidratos , Lectinas , Lectinas/química , Lectinas/metabolismo , Ligação Proteica , Carboidratos/química , Termodinâmica , Mucinas/química , Mucinas/metabolismo
19.
Molecules ; 28(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894512

RESUMO

Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.


Assuntos
Mucinas , Neoplasias , Humanos , Mucinas/química , Mucina-1/metabolismo , Polissacarídeos/química , Glicosilação , Neoplasias/terapia
20.
J Mater Chem B ; 11(42): 10121-10130, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824091

RESUMO

Nanoparticle-based drug delivery systems have shown increasing popularity as a means to improve patient outcomes by improving the effectiveness of active pharmaceutical ingredients (APIs). Similarly, nanoparticles have shown success in targeting alternative routes of API administration, such as applying mucoadhesion or mucopenetration to mucosal drug delivery to enhance uptake. While there are many promising examples of mucoadhesive nanomedicines in literature, there are also many examples of contradictory mucoadhesive binding behavior, most prominently in cases using the same nanoparticle materials. We have uncovered mechanistic insights in polymer-protein binding systems using nOe transfer-based NMR and sought to leverage them to explore nanoparticle-protein interactions. We tested several polymer-coated nanoparticles and micellar polymer nanoparticles and evaluated their binding with mucin proteins. We uncovered that the composition and interaction intimacy of polymer moieties that promote mucin binding change when the polymers are incorporated onto nanoparticle surfaces compared to polymer in solution. This change from solution state to nanoparticle coating can enable switching of behavior of these materials from inert to binding, as we observed in polyvinyl pyrrolidone. We also found the nanoparticle core was influential in determining the binding fate of polymer materials, whereas the nanoparticle size did not possess a clear correlation in the ranges we tested (60-270 nm). These experiments demonstrate that identical polymers may switch their binding behavior to mucin as a function of conformational changes that are induced by incorporating the polymers onto the surface of nanoparticles. These NMR-derived insights could be further leveraged to optimize nanoparticle formulations and guide polymer-mediated mucoadhesion.


Assuntos
Nanopartículas , Polímeros , Humanos , Polímeros/química , Ligação Proteica , Proteínas/metabolismo , Espectroscopia de Ressonância Magnética , Mucinas/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...